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ABSTRACT

As digital control systems are used in life-critical applications, assessment of the
safety of these control systems becomes increasingly important. One means of formally
performing this assessment is through fault tree analysis. Software Fault Tree Analysis
(SFTA) starts with a system-level hazard that must be decomposed in a largely-human-
intensive manner until specific modules of the software system are indicated. These
modules can then be formally analyzed using statement templates.

The focus of this thesis is to approach the decomposition of a system-level
hazard from a formalized standpoint. Decomposition primarily proceeds along two
distinct but interdependent dimensions, specificity of event and subsystem size. The
Specificity-of-Event dimension breaks abstract or combined events into the specific
system events that must be analyzed by the fault tree. The Subsystem-Size dimension
deals with the scope of the hazard, and itemizes the subsystems where localized events
may lead to the hazard. Decomposition templates are developed in this thesis to
provide a framework for decomposing a system-level hazard to the point at which line-
by-line code analysis can be conducted with existing statement templates. These
templates serve as guides for conducting the decomposition, and ensure that as many as

possible of all the applicable decomposition aspects are evaluated.
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I. INTRODUCTION

A. BACKGROUND
A fault tree is a graphical representation of an analysis of a physical system.
This analysis shows whether a combination of one or more contributing causes can
result in the occurrence of a specific undesired event. The starting point for the
construction of a fault tree is the specification of an undesired event. Fault tree
analysis has been applied to both the hardware and software of systems as a means of
proving an undesired event. The principles that are used to analyze software and
hardware via fault tees are sufficiently different to consider hardware and software
fault tree analysis as two separate processes.
1. Hardware Fault Tree Analysis
Fault tree analysis was first applied to hardware systems, and made
extensive use of hardware component failure rates. With hardware, the probability of a
specific piece of hardware failing due to wear can be accurately determined. Either the
analysis of historical data or direct experimentation can be used to assign a probability
of failure to virtually any piece of hardware. Logic theory in combination with
probability of failure data forms the mathematical basis for fault tree analysis.
a. Logical Relationship Between Hardware Events
The symbols used to build the fault trees presented throughout this
thesis are shown in Figure 1. These symbols are a subset of the symbols presented by
Hammer [Ref. 1:pp. 227-229] that are commonly used in both hardware and software
fault tree analysis. Bagchi [Ref. 2:p. 4486] shows how two basic logic properties, OR
and AND can be used to relate the probabilities of independent events. Consider, for

example, the following two equations where A, B, C are independent events and P(A),




The RECTANGLE indicales an event 10 be
analyzed further

The DIAMOND 15 used for non-primal evenls
not developed further for lack of information
or insufficient consequences

The OVAL 15 used to indicale a condition

The AND gale indicales that all inpul evenls
are required in order 1o cause the oulpul
event

The OR gale indicales thal one or more of
the inpufl evenls are required in order 1o
cause the oulput event

The NOT gate indicates that the output event
IS the logical negation of the input event

SE ()

Figure 1. Relevant Fault Tree Symbols

P(B), P(C) are equal to the probability of the occurrence of the events A, B, C
respectively. For the purposes of demonstrating the logical AND and OR properties,
let Equation (1) be, "if C=A+B then P(C)=P(A)+P(B)-P(A”B)", and let Equation (2) be,
"if C=A*B then P(C)=P(A)*P(B)". In both Equation (1) and Equation (2), P(X) is the
probability of independent event X occurring. Equation (1) can be reduced to
P(C)=P(A)+P(B), since the purpose of subtracting the probability of the intersection of
two events is to remove the redundancy involved when two OR’d events occur
simultaneously. With respect to fault tree analysis, this subtraction is not strictly
necessary. If two OR’d events occur simultaneously, the resultant event holds just as if
either one of the OR’d events had occurred separately, and in many systems the
probability of two simultaneous component failures is sufficiently low as to be

negligible.



Equations (1) and (2) form the basic foundation of the graphical
depiction of a fault tree, although any logical relation (XOR, NAND, NOR, etc.) can
be used as required to correctly represent the system. Bagchi represents the logical OR

of Equation (1) and the logical AND of Equation (2) graphically in Figure 2.

Event C Event C
P (C) P (C)

o) i

Event A Event B Event A Eveni B
P (A) P (B) P (A) P (B

Figure 2. Logical OR and Logical AND

The OR gate of Figure 2 shows the resultant fault tree from a system
that has two components in series. A failure causing either event A or event B will
result in the event C. The AND gate of Figure 2 shows the fault tree from a system
that has two parallel events. As indicated by the AND gate, both events A and B must
occur in order for event C to result. [Ref. 2:p. 4486] In short, fault tree analysis can
be used to identify combinations of events (hardware failure, design flaws) that have
the potential of causing the occurrence of the specified undesired event.

b. Orders of Fault Events

An important aspect of the use of fault tree analysis is the

decomposition of an undesired event into sub-events. These sub-events must be further

decomposed until system components or actions are identified. If these system events



can be proven to be incapable of occurring, the system is proven incapable of
generating the undesired event.

Fussell developed a methodology called the Synthetic Tree Model
(STM) [Ref. 3:p. 425] that distinguishes between four orders of fault events to guide in
the decomposition of an undesired event. The orders represent various degrees of
abstraction from the actual system components. The lowest order event, first order, is
the most abstract. The undesired event that the fault tree is attempting to prove or
disprove is the first order event that serves as the starting point or "root" of the
analysis tree.

Consider as an example the simple electrical circuit in Figure 3, similar
to the circuit presented by Salem [Ref. 4:p. 54] in his work on fault tree construction.

For the purpose of presenting Fussell’s orders of fault events, this example circuit is

Switch

—./

Power
Supply

Figure 3. Simple Electrical Circuit

composed of a light bulb, a power supply and a switch for turning the light on and off.
The undesired event that might be used as a first order event could be the event "light

not on". With Fussell’s methodology, the fault tree is constructed by manually



decomposing the first order event into higher order (less abstract) events. The
undesired event "light not on" could be broken down into the less abstract events "no
power to light bulb" or "light bulb broken".

Second order fault events are conditions that effect a grouping of
components that if failed would result in the occurrence of the first order event. A
second order event for our example circuit could be "no power in group A", where
group A consists of all components effected by this second order event. In our
example, group A would be comprised of the power supply, light bulb and light switch.
These components are grouped with respect to the serial nature of electronic circuits, in
that the failure of any one component would necessarily result in the apparent failure of
all the other components in the group.

A third order event involves a fully functional component that merely
acts failed due to a failure in another part of the system. The "no power to light bulb”
event decomposed from the original undesired event is an example of a third order
event. The light bulb will act failed (not light up) when in fact the light bulb is
functional but has no power coming into it. To develop this third order event, STM
requires a search for all second order groups in which the light bulb appears. The "no
power to light bulb” event requires "no power" in each of these second order groups
involving light bulbs. In other words, these groups are AND’d together to yield the
third order event "no power in light bulb”. Thus, a third order event is comprised of a
combination of applicable second order events.

The final level in Fussell’s methodology is the fourth order event. A
fourth order event involves a component that acts failed due to the input that the
component receives. The light switch being in the off position would be an example

of an input that causes the light bulb to act as though it had failed.



The development of Fussell’s methodology was based on electronic
circuit principles. Second order events make use of the serial path of an electrical
current. This reliance on the serial nature of components in an electrical system is a
critical aspect of Fussell’s STM methodology. It is this serial nature that requires the
grouping of all the components that will also fail if any component along the electrical
path fails. This serial grouping forms the basis for linking a third order event by an
AND of a group of second order events. This serial grouping allows Fussell’s
methodology to require that all groups containing a component failure that would yield
the third order event be included in the AND.

Fussell acknowledges that the fault trees constructed using his Synthetic
Tree Model are quite lengthy. The length of his trees is attributable to the method by
which Fussell’s methodology groups second order events. Second order events require
the grouping of all components serially connected to a component whose failure would
result in the second order event. This lengthens the tree by adding on components that
a fault tree developed using Fussell’s methodology must check. A tree being developed
by a method other than Fussell’s might not require this type of grouping, and might
therefore have less branches to check. There is, however, an advantage attributable to
the length of Fussell’s trees. Any number of fault trees constructed independently for
the same system and main failure event using Fussell’s methodology will result in
identical fault trees [Ref. 3:p 432]. This indicates a level of reliability in Fussell’s
methodology, and suggests the possibility that part or all of the fault tree construction
may be automated.

2. Software Fault Tree Analysis
Leveson and Harvey [Ref. 5:p. 570] describe an analysis technique that
makes use of the basic principles of fault tree analysis, but applies them to the analysis

of the software of a system rather than to a system’s hardware components. Since the



basic notion of determining what sequence of events are capable of producing the
undesired event is the same for the analysis of both hardware and software, a software
tree can be linked together with a hardware tree at the appropriate interface. This
allows the analysis of an undesired event to span over the entire hardware/software
system. This linkage ability strengthens software fault tree analysis (SFTA) by
allowing the effects of a hardware failure on the software system to be analyzed.

The value of being able to link together both the hardware and the software
of a system when conducting software fault tree analysis is illustrated by an example of
a hazard resulting from missile launch control software being tested for the F/A-18
aircraft [Ref. 6:p. 3]. The computer system was being used to control the launch of a
wing mounted missile. The computer system was to fire the missile, open the wing
station clamp to release the missile, and then close the clamp. The hazard occurred
because the software closed the clamp before the missile had built up enough thrust to
leave the wing. This resulted in the aircraft having 3000 pounds of extra thrust
attached to the wing of the aircraft. The ability of SFTA to be linked in with a
hardware fault tree presents the opportunity to fully analysis these interrelated errors.

There are differences in the approach that software fault tree analysis takes
in the analysis of a software system that sets this method apart from the more
traditional hardware fault tree analysis methods. A hardware fault tree relies on the
probabilities of failure for various hardware components. These failure probabilities are
either known, or can be accurately predicted. Hardware fault tree analysis makes use
of these probabilities of failure to construct a tree that will show which components are
critical to the system. This tree construction based on failure probabilities is possible
since hardware components are assumed to fail independently at a determinable rate.
Software fault tree analysis cannot proceed in the same manner since no such

assumption about failure independence can be made about software component failures.



[Ref. 5:p. 576] Furthermore, since software faults are design faults, determination of a
software failure rate is an unsolved problem [Ref. 7:p. 104].

The approach taken by Leveson and Harvey’s software fault tree analysis is
to use the fault tree to show that the logic of the software design will not produce or
contribute to actions that lead to system failures. This analysis can take place at any
desired level of abstraction, including code level analysis. If a failure is shown to be
possible, the structure of the resultant tree determines any environmental conditions that
could lead to the software causing a safety failure. [Ref. 5:p. 576] Software fault tree
analysis starts with the assumption that the software system has gotten itself into a state
in which the undesired event has occurred. With this assumption, the fault tree is
developed backwards starting with the undesired event and examines all the possible
paths that lead to the undesired event. Typical usage starts with the program
statements as written in the implementation language. Each statement is assumed to
have executed in a manner such that the undesired event occurs. The development
proceeds by looking at each statement and determining how the assumed statement
execution was allowed to occur.

a. Statement Templates

Cha, Leveson and Shimeall [Ref. 8:pp. 380-383] present statement
templates (hence forth referred to as "Cha’s Templates" for convenience) that are used
to analyze each of the possible Ada statements. The template for the decision
statement shows all the pathways that the software can take when a decision statement
is executed. The template for non-decision statements can be used to analyze the
various possible results from each statement, and can show whether the execution of
the assignment statement could result in another link in the chain leading back to the
undesired event. Figure 4 is an example of a template developed for an Ada

assignment statement [Ref. 8:p. 380].



Assignment
Causes
Failure

&

Change In Exception Operand
value Causes Evaluation
Causes Failure Faiure Causes Failure

Figure 4. Ada Assignment Statement Template

Cha’s templates were designed using statement semantics from the Ada
language, and by analyzing the causes of frequently made programming errors. The
templates suggest possible branches to analyze specific statements. This aids the
analyst in the consideration of all the possible results of a statement. The authors
contend that templates could be constructed to analyze program statements written in
any language, and allude that the templates might be tailor made to try to uncover
specific errors. This tailoring might make the search for critical, system specific events
more effective.

b. Contradiction Within Fault Trees

With or without the guidance of statement templates, every single
safety-critical path that the software may take during the course of execution must be
analyzed via a branch in the fault tree. Ideally, as paths are analyzed, contradictions
will occur. A contradiction with regard to software fault tree analysis is when an event
that could cause the undesired event is prevented by the software. Since the
contradicted event cannot occur, that particular analysis branch need no longer be

pursued.



A path that terminates without a contradiction is a path via which the
undesired event can occur, and actually proves that the undesired event could possibly
be generated by the system software. Since the exact path that allows the undesired
event is now known, it is a simple matter to place run-time checks in the code to halt
the pathway to the undesired event.

Even with the ability to halt tree development after a contradiction, any
given fault tree may still be lengthy if carried out to full term. Leveson and Harvey
[Ref. 4:p. 576] point out that it is not necessary to expand the entire tree down until
every path terminates in either a contradiction or the system environment. At any level
of abstraction, the analysis may be halted and run-time checks inserted into the code to

trap a developing unsafe state.

B. SAFETY CRITICAL CONSIDERATIONS

The prospect of testing a system using fault tree analysis may seem tempting
since this analysis method effectively proves whether or not a system will allow a
specific event to occur. However, testing deals primarily with determining whether or
not a system will function as it was designed to. The purpose of testing a system is to
attempt to show that the system does not meet its specification [Ref. 9:p. 3].

Leveson and Harvey [Ref. 5:p. 571] point out that software fault tree analysis is
focused on proving that the system is incapable of producing a specific event from a
software standpoint. This is much different from testing to see if a system will provide
correct output for all of a potentially infinite set of states that the system could be in
during the course of execution. Focusing on proving that the system cannot produce a
specific undesired event allows the analysis to take advantage of path termination when
a contradiction occurs, which makes for shallower trees. Stll, the set of what a

software system is not supposed to do is the complement of what the system is
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supposed to do, with the size of both sets potentially being very large. To attempt to
use software fault tree analysis on the set of events that the system is not supposed to
do would require an impossibly large number of fault trees to be developed. Since the
development of a fault tree is generally not a trivial undertaking, the set of events to be
analyzed must be reduced. The reduction of this set is where safety criticality comes
in.

The inclusion of safety criticality as a means of reducing the set of undesired
events with which the software fault tree analysis must contend primarily relies on two
underlying concepts. As Cha [Ref. 8:p. 377] points out, the first concept is that not all
failures are of equal consequence, and the second concept is that the number of
potentially serious failures is relatively small as compared to the overall set of
undesired events. Reducing the set of undesired events by determining which events
are critical to the safe operation of the software system allows SFTA to be focused on

the smaller set of potentially high-cost or otherwise unacceptable errors.

C. PROBLEM STATEMENT

The templates presented by Cha are useful in guiding the statement by statement
decomposition of software fault trees. However, these templates are limited in
application to line by line code analysis, and do not deal with undesired events not
linked to single linear sequences of statements. With current software fault tree
analysis techniques, no formal method exists for decomposing a system-level hazard to
the point at which the Cha statement templates can be applied. System-level hazards
are currently decomposed manually in what proves to be a largely human intensive
manner. Decomposition of system-level hazards in this manner relies heavily on
human insight and knowledge of the software system, and introduces human error in

the form of oversight.
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This thesis approaches the decomposition of a system-level hazard from a
formalized standpoint. The decomposition of the system-level hazard primarily
proceeds along two distinct but interdependent dimensions, specificity of event and
subsystem size. The hazard starts as a more general event that is assumed to occur
somewhere within a large system or subsystem. The process of decomposition involves
breaking the hazard into more specific events, or itemizing subsystems within which
the hazard may be a consequence. Decomposing a hazard in one dignensibr{ often
results in opening up further possibilities for decomposition along the other dimension.

The Specificity-of-Event decomposition dimension deals with how specific the
events and conditions associated with the hazard are. The goal of this decomposition
dimension is to identify the particular events that are to be analyzed within the
subsystems that comprise the system being examined. This decomposition works by
itemizing each event that could cause the hazard in the current subsystem. For this
itemization to be effective, the scope of the decomposition must constitute a complete
enumeration of the ways in which the hazard could occur within the current subsystem.
Although some of these itemized events will not be considered further, due to the
contradictions that the events represent, all possible occurrences of the hazard are
itemized for completeness. The sum of these itemized events represents in total the
ways in which the hazard can occur within the scope of the current subsystem.

The Subsystem-Size decomposition dimension deals with how large of a
subsystem is being considered when determining how the hazard being analyzed can
occur. This decomposition dimension moves the scope of the hazard from a more
general system wide event, to an event that is more specific in terms of the scope of
the subsystem that the event effects. This increase in the specificity of the event

effectively works to identify the specific system events that must be targeted for

12



analysis by the statement templates. Decomposing the hazard into various subsystems

focuses the tree towards subsystems that play a role in the hazard being analyzed.

D. STRUCTURE OF THESIS

Chapter II develops the design of templates that provide a framework for
decomposing a system-level hazard to the point at which line by line code analysis can
be conducted with existing statement templates. These templates serve as guides for
conducting the decomposition, and ensure that as many as possible of all the applicable
decomposition aspects are evaluated.

Chapter III demonstrates the use of the decomposition templates through an
example. The fault tree is developed starting with the decomposition of an undesired
system-level event. Events are further decomposed using the templates developed in
Chapter II indicating specific modules of the software system along with associated
specific events and conditions. This decomposition process is continued until the point
at which Cha’s statement templates can be implemented.

Chapter IV summarizes the work accomplished through the use of the
decomposition templates, and the conclusions that were drawn through the development
of this thesis. Areas of future work in the area of software event decomposition

templates are indicated in this chapter.
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II. DECOMPOSITION TEMPLATES

A. DECOMPOSITION OF A HAZARD

The hazard at the root of the software fault tree is decomposed in a manner such
that statement templates may be used to analyze the hazard at the statement level of
each applicable subsystem. The hazard is decomposed in two different abstract
dimensions. As depicted by Figure 5, these decomposition dimensions are the

specificity of the event being considered, and the size of the subsystem being

considered.

; implement
Specific Slglement
Templates

Specitit

OFI) Event !

General | Hazard

Large Small

Subsyslem Size

Figure 5. Decomposition Dimensions

Figure 5 shows the hazard starting as a more general event that occurs
somewhere in a large system or subsystem. The process of decomposition involves
breaking the hazard into more specific events, or itemizing subsystems within which
the hazard may be a consequence, or both. In both dimensions of the graph in Figure

S5, the path that the decomposition process takes is non-decreasing in nature. For
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example, the Specificity-of-Event dimension may be held constant so as to allow the
other dimension, Subsystem-Size, to move more to the right as it is decomposed.
However, the Specificity-of-Event dimension does not move towards a more general
event to allow the Subsystem-Size dimension to move from a larger to a smaller
subsystem size. A move such as this results in backtracking within the analysis tree.
Although a backtracking move would be required when the analyst determines that a
previous move was incorrect, backtracking effectively accomplishes nothing more than

returning to a previous state so that the analysis can take an alternate avenue.

B. SOFTWARE SYSTEM REQUIREMENTS

In order to illustrate each decomposition template as it is presented, a simple
software program is used. The following requirements for an imaginary traffic light
control program for an automobile intersection was used by Cha, Leveson and Shimeall
in demonstrating the use of software statement templates, and is repeated here :

"A taffic light control system at an intersection consists of four (identical)
sensors and a central controller. The sensors in each direction detect cars
approaching the intersection. If the traffic light currently is not green, the sensor
notifies the controller so that the light will be changed. A car is expected to stop
and wait for a green light. If the light is green already, the car may pass the
intersection without stopping. The controller accepts change requests from the
four sensors and arbitrates the traffic light changes. Once the controller changes
the light in one direction (east-west or south-north) to green, it maintains the
green signal for five seconds so that other cars in the same direction may pass in
the same direction without stopping. Before the green light in any direction
becomes red, it should remain in yellow for one second so that any car present in
the intersection may clear. The light then turns to red while the light in the
opposite direction turns to green." [Ref. 8:p. 382]

With the above requirements, the hazard analyzed to illustrate the decomposition
templates is "Two Cars Simultaneously in Intersection Traveling in Perpendicular
Directions”, or "Perpendicular Cars" for short. As noted by Cha, the above
requirements were designed to contain several failure modes. Finding failure modes

other than the one illustrated by Cha have no relevance to the importance of Cha’s
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work. Hazard decomposition as presented herein is intended to precede and
complement Cha’s work on statement templates. The application of statement templates

completes the hazard decomposition presented in this thesis.

C. SPECIFICITY-OF-EVENT DECOMPOSITION DIMENSION

The Specificity-of-Event decomposition deals with how specific the events and
conditions associated with the hazard are. The goal of decomposing the hazard with
regard to specificity is to identify the particular events that are to be analyzed within
the subsystems that comprise the system being examined. This decomposition works
by itemizing each event that could cause the hazard in the current subsystem. For this
itemization to be effective, the scope of the decomposition must constitute a complete
enumeration of the ways in which the hazard could occur within the current subsystem.
Although some of these itemized events will not be considered further due to the
contradictions that the events represent, all possible occurrences of the hazard are
itemized for completeness. The sum of these itemized events represents in total the

ways in which the hazard can occur within the scope of the current subsystem.

D. SPECIFICITY-OF-EVENT DECOMPOSITION TEMPLATES

Three basic logic relations, OR NOT and AND, are used to determine the
relationship of the events itemized by the decomposition process. The following
templates show the logical relationship that the decomposed event(s) and condition(s)
have to the hazard.

1. OR Template

The OR Template (Figure 6) is used to decompose a hazard that occurs

because either one of two events (Event 1 or Event 2) occur. Both Event 1 and Event
2 are capable of singularly causing the hazard to occur. Since either Event 1 or Event

2 could cause the hazard, each event is given its own branch within the OR gate. The
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Hazard Occurs Becavuse
Evenl t Or Evenl 2 Occurs

Bolh Event 1 And
Event 1 Occurs Event 2 Occur Evenl 2 Occurs

Figure 6. OR Template

center branch within the OR gate is reserved for the instance in which both Event 1
and Event 2 occur simultaneously. Further decomposition on this center branch
generally is halted immediately because in order for this branch to be taken during
analysis, both events must occur. If both events occur, then the hazard will occur the
same as if only one of the events had occurred. The analysis of the center branch may
be a direct duplication of the analysis of the two separate events, and in that case it is
not further pursued. Only if the center event suggests important and non-duplicative
analysis directions is it explored. For example, if the two events leading to a hazard
are not independent, the center branch could be used to explore their interdependency
as a source of the undesired event. If the center branch is irrelevant, it is omitted from
the analysis.

An example of the decomposition of the hazard using a OR Template
(Figure 7) in the traffic light control system is found in the requirements. The

requirements state that before the green light in any direction becomes red, it should
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Perpendicuiar Cars

In Intersection
NO Pause in Yellow Software Commands
When Light Commanded Perpindicular
From Green to Red Lights Green

Figure 7. Example OR Template Use

remain in yellow for one second so that any car presently in the intersection may clear.
If the software fails to make each light pause in yellow for one second during the
transition from green to red, a car could get caught in the intersection when the
opposing traffic light turns green. One branch of the OR Template for the
decomposition of Perpendicular Cars is the event "No Pause in Yellow When Light
Commanded From Green to Red". Another branch considered here is the software
system’s command of the lights. If the software were to command perpendicular lights
to be green at the same time, the Perpendicular Cars hazard could occur. This
decomposition represents the second branch as "Software Commands Perpendicular
Lights Green".
2. NOT Template
The NOT Template (Figure 8) is used to decompose a hazard that occurs

because an event or action fails to occur. The logical NOT decomposes the hazard
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such that it is not the case that the event does occur. This frees the analyst to consider
the case in which the event does occur. As with a mathematical proof by
contradiction, it may be more straightforward to show that there is a contradiction with
assuming that an event does occur than it is to show that, for all cases, it is impossible
for the event to occur within the system. An example of the use of a NOT Template
(Figure 9) is the "No Pause in Yellow When Light Commanded From Green to Red"

Branch of the example OR Template hazard decomposition appearing in Figure 7. By

NO Pause in Yollow
Hazard Occurs Becavse when Lignt Commanoeo
ACHON F3iig TO Be Dome From Grean 0 Reo
A\
Hazero Occurs Bacavse Pause in Yellow When
Action 1s Oone Lght Commanded
From Green 10 Red

Figure 8. NOT Template Figure 9. Example NOT Template

applying the NOT Template, the event "Light Pauses in Yellow When Light Goes

From Green to Red" could instead be analyzed if this event is deemed more
straightforward to evaluate.
3. AND Templates

A logical AND is represented with two different AND decomposition

templates. The first AND Template (Figure 10) is used to decompose a hazard that

occurs because both of two separate events (Event 1 and Event 2) occur. This
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Hazard Occurs Because
Both Evenli Ang Event2 Occur

i
|

Eventl Qccurs Event2 Occurs

Figure 10. AND Template

decomposition template breaks the hazard into two events, each of which is analyzed
individually. If either of the events can be shown to be incapable of occurring, the
analysis of both of the AND branches is stopped.

An example of the use of the AND Template (Figure 11) is to further
decompose the "Software Commands Perpendicular Lights Green" branch of the OR
Template. To decompose this branch further, consideration must be given as to how
the software could end up in a state in which perpendicular lights have been
commanded green. One way for this event to occur is if the software properly
commands a light green, while at the same time the perpendicular light is stuck in a
green state.

The second AND (WHILE/WHEN) Template (Figure 12) is used to
decompose a hazard that occurs because an event occurs while a specific condition is
true. If the condition does not hold while the event occurs, then the hazard does not

occur. Thus, the event is dependant upon the condition associated to it by the AND
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Software Commands
Perpendicuiar Lighls

Green
AND
Software Commands Perpendicular Lignt
One Light Green Stuck in Green Slate

Figure 11. Example AND Template Use

gate. All subsequent decompositions resulting from the event side of the AND gate

carry with them the scope of the condition side.

Hazard Occurs Because Evenl Occurs
While or When Condition 15 True

a

Figure 12. AND (WHILE/WHEN) Template
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An example of the use of the AND (WHILE/WHEN) Template (Figure 13)

is to further decompose the "No Pause in Yellow When Light Commanded From Green

No Pause I1n Yellow wWhen Light
Commanded From Green 10 Red

Light Does Not Light Commanded
Pause in Yeliow From Green To Red

Figure 13. Example AND (WHILE/WHEN) Template Use

to Red" branch of the example OR Template hazard decomposition in Figure 7. This
event is broken down into an event and a condition that must be true in order for the
associated event to result in the occurrence of the hazard. The event is decomposed
using an AND (WHILE/WHEN) Template into the event "Light Does Not Pause in

Yellow" and the condition "Light Commanded From Green to Red".

E. HIGH-LEVEL TRAFFIC-LIGHT DESIGN

For the purposes of demonstrating the subsystem decomposition templates, a
simple high level design loosely fulfilling the requirer;lems for Cha’s stoplight system is
represented in the High-Level Traffic-Light Design (Figure 14). This high-level design

has a "controller" process which determines how the four lights should be set, and
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sends commands for changing the lights to four identical "Set Signal" processes. The

four "Set Signal" processes in turn control the four traffic light devices.

Clock Time Sgnals

Read Car Sensor

Car Arrives Command to Signal

\/

Trathic Sgnal

SensoQr Hargware

Figure 14. High-Level Traffic-Light Design

When the "Controller” process determines a light should be changed from green
to red, the "Controller" process is responsible for ensuring that the light pauses in
yellow during the transition. Each "Set Signal" process controls one of the four
physical traffic signals in the intersection, and sends green, yellow, and red indications
to the traffic light as directed by the "Controller" process. The "Controller” process
determines how the four lights should be set by accepting input both from a clock and
from the four identical "Read Car Sensor” processes. Each "Read Car Sensor" process
reads sensor hardware that indicates when a car has approached the intersection. The
"Controller” process uses input from the clock device to ensure that the light has
remained green in one direction long enough to allow a predetermined minimum

number of cars through the intersection. This high-level design is by no means

23



complete, and is intended to be a tool for demonstration of the use of subsystem

decomposition templates.

F. SUBSYSTEM-SIZE DECOMPOSITION DIMENSION

The Subsystem-Size decomposition dimension deéls with how large a subsystem
is being considered when determining how the hazard being analyzed can occur. The
size of the subsystem may start out comprising the entire software and hardware system
in the beginning of the decomposition. This decomposition moves from a more general
system wide event, to an event that is more specific in terms of the scope of the
subsystem that the event effects. This increase in the specificity of the event
effectively works to identify the specific system events that must be targeted for
analysis by the statement templates. Decomposing the hazard into various subsystems
focuses the tree towards subsystems that play a role in the hazard being analyzed.

Along with indicating which subsystems should be investigated, the software fault
tree must indicate any conditions or events that must be considered when analyzing the
subsystem on a statement by statement basis. These conditions and events are
indicated through the previously described AND (WHILE/WHEN) template (Figure 12).
The focus of the templates presented below is to decompose the overall software
system with the intent of identifying the subsystems that can contribute to the
occurrence of the hazard.The decomposition of a system into its various subsystems
relies on the communication links and interfaces with which the system will function.
In order to demonstrate the use of subsystem decomposition templates, the high-level
design for the traffic light system previously described is used to represent the

communication between the processes of the subsystem.
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G. SUBSYSTEM-SIZE DECOMPOSITION TEMPLATES
1. Subsystem Template
Subsystem decomposition templates are used to break out from the overall
system the various systems and subsystems that must be considered in regard to the
hazard. Three templates are used for the decomposition of subsystems, and are related
via an OR gate as shown in the Subsystem Template (Figure 15).
At the root of the Subsystem Template is the subsystem that is indicated by

the hazard or event. The Process Template branch decomposes the subsystem based

Subsystem
To Be
Decomposed

A l

Process Commumication Access

Template Templale Template

" Figure 15. Subsystem Template

upon the input-process-output of a subsystem. The Communication Template branch
decomposes the subsystem based upon the communication between various processes
within a subsystem. The Access Template branch decomposes the subsystem based

upon the access that a subsystem may have to a device or database.
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An example of the use of the Subsystem Template (Figure 16) is to
decompose the event "No Pause in Yellow When Light Commanded From Green to
Red" from the left branch of the example OR Template (Figure 7). At this point, the
entire system is considered when determining which subsystems to decompose based
upon this event. Subsequent decompositions using the Subsystem Template would use
the scope of the subsystem that is currently being evaluated as the root subsystem of

the template.

Decompose Entire System
Based on Evenl "No
Pause In Yellow Wnen Lignt
Commanded From Green to Red’

[=)

Processes Thal

Conlroller Processes That Have Access To
Process communicate With Traftic-Light
Causes Controller Process Device Cause

Above Event Cause Above Eveni Above Event

Figure 16. Example Subsystem Template Use

To evaluate the event "No Pause in Yellow When Light Commanded From
Green to Red" for subsystem decomposition, the analyst must determine from the
system design the processes that control the traffic light, the subsystem(s) that
communicate with these controlling processes, and the processes that actually have
access to the traffic light. The processes that can be decomposed from the system are

determined by evaluating the High-Level Traffic-Light Design (Figure 14).
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As shown in Figure 16, the "Controller” process is indicated in the left
branch of the template because it is the process within the system that controls the
traffic light by sending commands to set the traffic signal to the "Set Signal" process.
The middle branch of Figure 16 indicates that all the processes that communicate with
the "Controller” process must be considered by the decomposition. The right branch of
Figure 16 indicates that all processes that actually have access to the traffic light should
also be considered in this decomposition step.

2. Process Template

The Process Template (Figure 17) is used to decompose the subsystem by

evaluating the three basic areas of the subsystem. These three areas are distinguishable

by their relation to the overall process contained within the subsystem.

Process Indicated By Event X

1 l L
Inpul {o Process Internal Process Output of Process
] |
| ]
Indwvidual Subprocess Subprocess Inleraction
(1-N) Caused Event X {1-N) Caused Evenl X

A« “,l,ﬁ‘ﬁf C o

e B
Figure 17. Process Template
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The first branch of the Process Template (Figure 17), Input To Process,
decomposes the subsystem by considering the input to the subsystem from either a
larger subsystem within which the current subsystem is contained, or input from the
environment within which the subsystem operates. The input to the process within the
subsystem is decomposed to evaluate whether or not input to the process can cause the
hazard to occur.

The second branch of the Process Template (Figure 17), Internal Process,
deals with the overall process that the current subsystem performs. As shown by the
Process Template, the overall process itself can be decomposed into subprocesses 1-N.
The total number of subprocesses (N) is limited because of the safety critical nature of
the system being analyzed. If N is excessively large, then the system is inherently
unsafe because the safety critical processes cannot reliably be isolated. The Process
Template is designed for use on systems with a relatively small number of safety
critical subprocesses. These N subprocesses are considered in two ways, individually
and in combination.

Under the Individual Subprocess branch of the Process Template (Figure
17), each subprocess is considered individually to determine if any one of the N
subprocesses can by itself result in the occurrence of the hazard. Each subprocess is
strictly evaluated in isolation, with no interaction allowed from any other subprocess.
If a subprocess always requires interaction with other subprocesses, then the individual
subprocess decomposition is stopped. A subprocess requiring interaction is evaluated
under the Subprocess Interaction branch of the Process Template.

The second way in which the Process Template (Figure 17) considers the N
subprocesses that are decomposed via the Internal Process branch is through the
evaluation of the interaction of one of the N subprocesses with another of the N

subprocesses. The decomposition of the process of a subsystem that takes advantage of
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parallel processing must consider the different combinations of subsystems that are
capable of processing in parallel. From this set of combinations, the software fault tree
must consider whether any of the combinations are capable of interacting in a manner
that would result in the occurrence of the hazard.

The third branch of the Process Template (Figure 17), Output of Process,
decomposes the subsystem by considering the output that is produced by the overall
process that the current subsystem performs. The output from the process is evaluated
to consider whether the output can cause the hazard to occur.

An example of the use of the Process Template (Figure 18) is to decompose
the "Controller” process of the high-level traffic light design. The decomposition starts
with the analyst pursuing the "No Pause in Yellow When Light Commanded From
Green to Red" event branch of the example OR Template (Figure 7). The analyst
determines that the "Controller" process is a process that could be indicated by the

occurrence of this event.

Controller Process Indicated By Event
‘NG Pause in Yellow when Light
Commanded From Green to Hed

fe)

] — [ ]
Internal Processes Inpul To Output to Set
within Controtler Process Signal Processes
Cause Above Event Causes Above Evenl
| ]
Input From Read Car Sensor Input From Clock
Process Causes Abaove Event Causes Above Evenl

Figure 18. Example Process Template Use
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The "Controller" process is decomposed into three areas as shown in Figure
18. The first branch of the Process Template indicates that the internal processes
within the "Controller" process should be analyzed. The second branch "Input to
Process" indicates that the four "Read Car Sensor” processes and the "Clock” process
should be analyzed since these processes provide input to the "Controller” process.
The third branch indicates that the output from the "Controller” process to the four "Set
Signal" processes should be analyzed to determine if the event in question could be a
result of what is output by the "Controller" process.

3. Communication Template

The Communication Template (Figure 19) is used to decompose a subsystem
based upon the communication between the processes that make up the subsystem.
Processes can communicate via a rendezvous (as in Ada), through shared memory, or

through the exchange of data.

Communicalion Belween
Processes Wilhin Subsystem

| |- |
Communication via| | Communication via || Communication via
Rendezvous Shared Memory Exchange of Dala
| Process Templale ] lProcess Templale I
| |
Process A Process B Effected By
Changes Memory Process A's Memory Cnange

Figure 19. Communication Template
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The communication that can occur through a Ada rendezvous is checked
using the Rendezvous branch of the Communication Template to determine if the
hazard can occur here. Processes that communicate through rendezvous are analyzed in
a manner similar to the way in which processes communicating through the exchange
of data are analyzed. The two processes that rendezvous in effect join to form one
overall process. This combined overall process is then analyzed using the Process
Template.

For processes that communicate through shared memory, each process is
analyzed under the Shared Memory Branch of the Communication Template with
consideration given to changes to the shared memory that the first process can make.
These changes may cause the second process to function in a manner such that the
hazard occurs. As with the Process Template, the number of safety critical processes
that communicate through shared memory must be small. If the number of safety
critical processes communicating through shared memory is excessively large, then the
system 1is inherently unsafe because the safety critical processes cannot reliably be
isolated.

Whether or not the hazard can occur by way of the exchange of data
through output from one process and input to another process is considered through the
use of Process Templates. In the Exchange of Data branch of the Communication
Template (Figure 19), the two processes exchanging data are considered joined together
to form a single combined process. This combination process is then evaluated under
the Process Template. The data that is output from the first process is analyzed using
the Output of Process branch, while the data that is exchanged as input is evaluated
using the Input to Process branch.

An example of the Communication Template (Figure 20) is limited by the

simplicity of the example high-level traffic-light design. At this level, neither the
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Figure 20. Example Communication Template Use

processes that communicate through rendezvous type operations, nor the processes that
communicate through shared memory are known. The first and second branches of the
Communication Template are therefore not pursued in the example.

The third branch of the Communication Template is used to ensure that all
the processes that communicate with the "Controller” process are considered when
analyzing the "Controller" process with regard to the hazard. As indicated by Figure
20, there are three distinct sets of processes that communicate with the "Controller”
process through the exchange of data. These sets of processes are the four "Read Car
Sensor" processes, the "Clock" process, and the four "Set Signal" processes. As shown
by Figure 20, each of these distinct sets of processes must be analyzed for any role
they might play in the "Controller" process causing the event, "No Pause in Yellow

When Light Commanded From Green to Red".
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4. Access Template
The Access Template (Figure 21) is used to decompose the subsystem by
evaluating the access that the subsystem has to the control of a device or the

maintenance of a database.

Access Subsyslem Has To
Device/Dalabase Causes Hazard

fa)

Access Lo Device Access 10 Database
Causes Hazard Causes Hazard

Figure 21. Access Template

Using the Access to Device branch of the Access Template, a subsystem
controlling a device is evaluated to determine if the subsystem can control the device in
a manner such that the hazard can occur. As shown in the Access To Device Template
(Figure 22), the analysis of a subsystem’s access to a device consists of three distinct
evaluation conditions.

The first evaluation condition of the Access to Device Template is that the
subsystem must have access to the device that causes the hazard. The second
evaluation condition is that the subsystem must be capable of sending commands to the
device, with the hazard occurring as a result of the device receiving these commands.

The third evaluation condition is that the subsystem actually sends the hazard-causing
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commands to the device. These evaluation conditions are AND’d together because in
order for the subsystem to cause the hazard through its access to the device, all three
of these conditions must be met.

In a similar manner, the Access to Database branch of the Access Template

(Figure 23) is used to determine if a subsystem maintaining a database can make

Access To Devce
Causes Hazard

Commana From

Subsystem Subsystem Sends Subsystem To
Accesses Command To Device Causes
Device Device Hazard

Figure 22. Access To Device Template

entries or updates to the database that can result in a process accessing the database
values and utilizing these values in such a manner that the hazard occurs. As shown in

the Access To Database Template, the analysis of a subsystem’s access to a database is

evaluated using three distinct conditions.

The first evaluation condition is that the subsystem must have write access
to the database from which values that cause the hazard are referenced.

The second evaluation condition is that the subsystem must be capable of
writing values to the database, with the hazard occurring as a result of a process

referencing these values. Here, the removal of a value from the database and having
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Figure 23. Access To Database Template

the hazard occur as a result of this removal is considered as an overwrite of an original
valid value.

The third evaluation condition is that the subsystem actually writes the
hazard-causing value to the database. These evaluation conditions are AND’d together
because in order for the subsystem to cause the hazard through its access to the
database, all three of these conditions must be met.

An example of the use of the Access To Device branch of the Access
Template is the decomposition of the Output of Process branch of the Process Template
example (Figure 17). This branch indicates that the "Set Signal" processes need to be
analyzed to determine if the "No Pause in Yellow When Light Commanded From
Green to Red" event could be caused within these processes. The Example Access To
Device Template (Figure 24) shows how a subsystem causing the "No Pause in
Yellow" hazard is considered.

Each "Set Signal" process has access to a traffic light since these processes

control the changing of the traffic lights, so these processes are indicated in the first
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Figure 24. Example Access To Device Template Use

branch of the example. In the second branch of the example, the commands that these
processes give to the traffic light must be analyzed to determine if it is possible for
these processes to send commands that could cause, in this example, the light to not
pause in yellow when changing from green to red. The third branch of the example
indicates that the hazard-causing commands indicated by the second branch must

actually be sent to the traffic light in order for the hazard to occur.

H. TIME RELATIONSHIP OF EVENTS

The decomposition of the hazard event carries with it the implication of going
back in time. As an event is decomposed, all the breakdowns that are the result of the
decomposition have the requirement of occurring simultaneously with the hazard, or at
some time prior to the occurrence of the hazard. SFTA must go backward in time
from the occurrence of the hazard so that the system can be established in a normal

safe operational state. The implication of the fault tree being backed out all the way to
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the initialization of the system without ending in a safe operational state is that the
unsafe event is not prevented by the system.
The Time Template (Figure 25) shows an event that is decomposed into an event

that must occur first in order for the later event to occur. This decomposition is based

Evenl { Causes Hazard

Eveni 2 Causes Evenl |

Figure 25. Time Template

upon the logical implication, "if A implies B and B implies C, then A implies C", and
carries with it the relationship of the events with regard to time. In Figure 25, Event 1
is the event that the fault tree indicates would cause the occurrence of the hazard.
Event 2 is an event that causes Event 1 to occur. The link between the two events is
that Event 2 must occur before Event 1. Although Event 2 by itself does not directly
cause the hazard to occur, Event 2 must be considered due to its relationship with
Event 1. Because Event 2 causes Event 1 to occur, Event 2 indirectly causes the
occurrence of the hazard.

An example of the use of the Time Template (Figure 26) can be found by

modifying the requirements of the traffic light control system. The modification is that
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one of the roads leading to the intersection has a blind curve that must be driven
through just prior to entering the intersection. On the curve prior to the intersection is
a flashing yellow light that serves to warn motorists that an intersection with a traffic
light lies ahead.

Figure 26 shows how the Time Template can be used to decompose an event into

a second event that precedes and causes the first event to occur. The event that causes

Car Entering !ntersection
Against Red Lght Causes
‘Perpindicylar Cars® Hazarg

Yellow warning Light Faiture
Causes Car To Enter
Interseclion Againsi Red Light

Figure 26. Example Time Template Use

the "Perpendicular Cars" hazard is a car entering the intersection against a traffic light
that is displaying a red signal. The event of entering the intersection against a red light
could indirectly be caused by the flashing yellow warning light being inoperative.
Without the warning to slow down on the blind curve prior to the intersection, the
motorist does not have enough room to stop the vehicle, given reaction time and
stopping distances for a car traveling at normal speed. Thus, the failure of the flashing

yellow warning light indirectly causes the "Perpendicular Cars" hazard.
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I. INTERDEPENDENCE OF DECOMPOSITION DIMENSIONS

The two decomposition dimensions, Specificity-of-Event and Subsystem-Size, are
dependant on each other. Both are goals of the hazard decomposition. The specificity
of an event can be made more specific as a means of aiding in the decomposition of a
subsystem’s size. In a similar manner, the decomposition of a subsystem’s size serves
as a means of making the targeted event more specific. ~As the Decomposition
Dimensions in Figure S at the beginning of the chapter shows, the decomposition of a
hazard occurs along two distinct dimensions, specificity of event and subsystem size.
As the system is analyzed, either decomposition dimension can be used as a means of
decdmposing the hazard. The templates presented in this chapter form a framework
from which it is possible to decompose the hazard along either of the two dimensions.
As the hazard analysis proceeds, it may be advantageous to decompose the hazard or
event with the intent of making the other decomposition dimension more useful. In
other words, to advance the Subsystem-Size decomposition, the Specificity-of-Event
decomposition dimension may be invoked specifically to help the analyst advance the
Subsystem-Size decomposition. In the following chapter, the framework of
decomposition dimensions and decomposition templates presented in this chapter are

applied to a more complicated example.
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III. APPLICATION OF DECOMPOSITION TEMPLATES

A. ONE-LANE BRIDGE REQUIREMENTS MODEL

In this chapter, the decomposition templates presented in Chapter II are applied to
the requirements model of a software system developed by Ripps [Ref. 10:p. 32] in his
work on the development of real time requirements. This software system is being
designed to control the traffic flow on a one-lane bridge. As depicted by Figure 27,
the one-lane bridge is shared by both lanes of a dual-lane road. The software system
controls access to the bridge through the use of traffic lights, and is to keep traffic
travelling across the bridge flowing smoothly in one direction or the other as

appropriate.

enghl LB

== | )
4 Sensor 4 Sensor 34

One-Lane
Two-Lane Road Two-Lane Road
Bndge

ySensor 1 Sensar 2 ¢

. >

Light RB o

Figure 27. Depiction of One-Lane Bridge

The requirements model for the one-lane bridge appears in Appendix A as a set
of rules that governs the software system controlling the bridge. Since this behavioral
model is somewhat difficult to comprehend as a set of rules, a graphical representation

of the one-lane bridge control system is provided in Appendix B.
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B. ONE-LANE BRIDGE HAZARD

For the purpose of presenting an application of the decomposition templates, the
one-lane bridge control system is analyzed for the hazard "Two Cars Simultaneously on
Bridge in Opposite Directions”. Normally, the event at the root of a fault tree would
be much more specific than this event, but for the purposes of illustration an event of
this generality is used so as to demonstrate the various applications of the
decomposition templates developed in Chapter II The event "Two Cars
Simultaneously on Bridge in Opposite Directions” is used as a starting point because it
is an event that is unsafe for the motorists travelling across the bridge, and is an event
that the software control system should not allow to occur. This hazard appears at the
root of the resultant software fault tree, and is the initial event decomposed via the
decomposition templates. It is noted that the decomposition process is not concerned
with whether the hazard could occur for reasons beyond the control of the software,

such as cars ignoring a red light and illegally entering the bridge.

C. DECOMPOSITION OF ONE-LANE BRIDGE HAZARD

1. Specificity-of-Event Decomposition Dimension

The Specificity of Event decomposition dimension is used to make the

hazard event, "Two Cars Simultaneously on Bridge in Opposite Directions”, more
specific in terms of events and conditions associated with these events. Inspection of
the hazard indicates that one way in which the hazard event could be decomposed is by
using the AND (WHILE/WHEN) template (Figure 28).

The AND (WHILE/WHEN) template is indicated because the hazard requires that
an event occurs while a condition holds. The event is "Lights in Both Directions
Green Simultaneously”. The condition associated with this event is that "Two Cars

Approach From Opposite Directions”. All subsequent decompositions under the event
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side of the AND (WHILE/WHEN) template branch occur within the scope of this

condition.

Two Cars Smmullaneously On
Bridge in Opposite Drectns

Event Conadition
Lights In Both Drections Two Cars Approach From
Gregn Smulianeously Oppaosite Oreclons

Figure 28. Bridge Hazard Decomposition

The decomposition of the event side of Figure 28 makes further use of the
Specificity of Event decomposition dimension and is based upon the analyst’s
knowledge of the system. Inspection of the requirements model in Appendix B reveals
that there are four separate system controlled events that could cause the event side of
Figure 28, "Lights in Both Directions Green Simultaneously", to occur. Since these
four events are independent of one another, they are decomposed from the event side of
Figure 28 through the use of the OR template (Figure 29). Each of these four events
are analyzed independently by the fault tree because any one alone could cause the
event side of Figure 28 to contribute to the occurrence of the hazard.

The events decomposed by Figure 29 come from the requirements model for
the one-lane bridge (Appendix B). The analyst must determine the ways in which the
event "Lights in Both Directions Green Simultaneously” from Figure 28 could occur

within the scope of the system’s control. The requirements model’s "Initialization”
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Figure 29. Decomposition of Bridge Hazard Event

process and two light control processes indicate that the "Lights in Both Directions
Green Simultaneously” event could occur by at least four events that are controllable
by the system’s software.

The first event is "Lights Not Initialized Red". If the lights are not
initialized red, then the possibility exists for the lights to initially come on green when
the system starts to control the bridge.

The second and third events consider the cases where one light is
commanded to green while the other light already green. These two events are
essentially the same event with the difference being which light is already green, and
which light is being commanded to green by the software. Due to this reflexive
condition, only the event "Right-Bound Light Commanded Green While Left-Bound

Light Green" will be expanded. The conditional nature of this event indicates that the
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event "Right-Bound Light Commanded Green While Left-Bound Light Green" can be
further decomposed using the AND (WHILE/WHEN) template.

The fourth event considered that is controllable by the system software is
"Software Commands Both Lights Green Simultaneously”. This event delves into
whether or not the system is capable of turning the traffic lights in both directions
green at the same time.

As shown in Figure 29, the event "Right-Bound Light Commanded Green
While Left-Bound Light Green" is decomposed into the event "Right-Bound Light
Commanded Green" and the condition "Left-Bound Light Green" through the
application use of another AND (WHILE/WHEN) template. This decomposition step is
necessary to distinguish the event being considered for further decomposition by the
fault tree from the condition whose scope will cover all subsequent decompositions of
the associated event.

Cases such as one or both lights being stuck in the green position are
hardware related and are not considered by this particular fault tree application. The
analyst may elect to include hardware events as a means of branching into hardware
fault tree analysis in a manner similar to that presented by Leveson [Ref. 5:p. 570]. If
this were the case, then the inclusion of hardware controlled events such as lights being
stuck green would be appropriate in this decomposition step.

2. Subsystem-Size Decomposition Dimension

Up until this point, the decomposition process has used the Specificity-of-
Event decomposition dimension for decomposing the hazard. Further decomposition of
the event branches of Figure 29 with regard to the Specificity-of-Event dimension do
not readily follow, suggesting that the Subsystem-Size decomposition dimension should

be considered. To illustrate the Subsystem-Size decomposition dimension, the event
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branches of Figure 29 are further decomposed using Subsystem decomposition
templates.

The Subsystem template allows the current subsystem to be broken down
into subsystems of smaller scope that are more directly applicable to the occurrence of
the hazard. These decomposition steps are driven by the events that are being
decomposed and start with the entire system being considered as the root of the
Subsystem template. Each event from the branches of Figure 29 decomposes in this
case the entire system into the subsystem that plays a role in each particular events
occurrence.

The event "Lights Not Initialized Red" from Figure 29 indicates that the
further decomposition of this event requires the system to be broken down into the
subsystem that controls the initialization of the lights, in this case the "Initialize
System" process (Figure 30). This decomposition step makes use of the process branch
of the Subsystem template, indicating that it is the input-process-output of the
"Initialize System" process that should be next analyzed to determine whether the lights
are initialized red by the system. Neither the Communication branch nor the Access
branch of the Subsystem Template are indicated as avenues for further decomposition
because the requirements model in Appendix A presents "Initialize System" as a
process that does not communicate with other processes and does not have access to
any device or database. Therefore, the Communication and Access branches are both
represented by a diamond indicating that there is no further decomposition along these
avenues.

The application of the Process template to the process branch of Figure 30
is represented by Figure 31. The process "Initialize System" is decomposed with
regard to the event "Lights Not Initialized Red" carried through from the subsystem

decomposition in Figure 30. The Process template gives a structure for analyzing the
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Process Couses Access
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Figure 30. Process Subsystem Decomposition

process contained within "Initialize System". Figure 31 shows that the input to the
process, the output from the process, and the constructs internal to the process must all
be analyzed to determine if one or more of these parts of the "Initialize System"
process could allow the "Lights Not Initialized Red" event to occur.

The event "Right-Bound Light Commanded Green" from Figure 29 indicates
that the access that the system has to the right-bound light should be checked for this
event. By analyzing the graphical representation of the one-lane bridge requirements
model in Appendix B, it is apparent that the part of the system that has access to the
right-bound light is the "Control RB Light" process. Figure 32 indicates that the access
of the "Control RB Light" process to the right-bound light should next be analyzed to
determine whether the right-bound light can be commanded green while the condition
of the left-bound light already being green holds. Neither the Process branch nor the
Communication branch of the Subsystem template are indicated for further

decomposition, so both of these branches are represented as diamonds in Figure 32.
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Figure 31. Process Template
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Figure 32. Access Subsystem Decomposition
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The application of the Access template to the access branch Figure 32 is
represented by Figure 33. The process "Control RB Light" is decomposed with regard
to the event "Right-Bound Light Commanded Green" carried through from the
subsystem decomposition in Figure 32. The Access template gives a structure for
analyzing the access that the process "Control RB Light" has to the right-bound light of

the one-lane bridge.

Access That ‘Control RB Light" Process Has
To Right-Bound Light Device Causes Event
‘Righl-Boung Light Commanged Green”

B

‘Control RB Light”
Sends Command

Command From

‘Control RB Light”| |'Control RB Light’ Causing Above
Has Access To To Right-Bound Evenl To
Right-Bound Light Causes Right-Bound
Light Devke Above Event Light Device

Figure 33. Access Template

The template in Figure 33 shows the three cases that must hold, and
therefore be analyzed by the fault tree, in order for the "Control RB Light" process to
cause the event "Right-Bound Light Commanded Green". The first case is that
"Control RB Light" must have access to the Right-Bound light on the bridge. The
second case is that "Control RB Light" must be capable of sending one or more
commands to the Right-Bound light that would result in the event "Right-Bound Light
Commanded Green". The third case is that "Control RB Light" must actually send the

commands specified in the second case to the Right-Bound light.
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The decomposition of the event "Software Commands Both Lights Green
Simultaneously” from Figure 29 requires knowledge of how the system allows each
light to be commanded green. Requirements model rules 1 and S from the
requirements model in Appendix A require each light control process to wait until
exclusive access to the bridge is granted before turning the controlled light green. This
requirement of waiting for exclusive access indicates that the system should be broken
down into the subsystems that communicate through whatever process controls the

exclusive access to the bridge (Figure 34).

Oecompose Entwe Bridge Control System
Based Upon Event "Software Commands
Both Lghts Green Simultaneously”

/)

Communication Between
RB Exclusive Access

And
LB Exclusive Access
Causes Above Event

Figure 34. Communication Subsystem Decomposition

The requirements model identifies two processes that control the access to
the bridge through a rendezvous type operation. These two processes are the "RB Wait
For Exclusive Access To Bridge" process and the "LB Wait For Exclusive Access To
Bridge" process. For illustration purposes these two processes will be referred to as
"RB Exclusive Access" and "LB Exclusive Access" respectively. The application of

the Communication template to the Communication branch of Figure 34 is represented
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by Figure 35. The two processes, "RB Exclusive Access" and "LB Exclusive Access”,
that control the access to the bridge through a rendezvous type operation are
decomposed with regard to the event "Software Commands Both Lights Green
Simultaneously” carried through from the subsystem decomposition in Figure 34. The
Communication template gives a structure for analyzing the rendezvous type operation
which is the way the two exclusive access processes are assumed to communicate. At
this point, neither the Process branch nor the Access branch of the Subsystem template
are indicated for further decomposition. These branches are therefore both represented

by diamonds in Figure 34.

Communication Belween RB Exclusive Access
And LB Exclusive Access Processes Causes
Event ‘Software Commands Both Lighls
Green Simultaneously® To Occur

[

Rendezvous
Belween
RB Exclusive Access
And

Shared LB Exclusive Access Dala
Memory Causes Evenl To Occur Exchange

Figure 35. Communication Template

As Figure 35 indicates, the rendezvous between the two exclusive access
processes must be evaluated. The effect of a rendezvous is to create a new process.
This new process is entirely made up of the interaction that goes on between the two
exclusive access processes when the rendezvous type operation is accomplished, and is

in fact the single process that actually controls exclusive access to the bridge. This
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new process must be analyzed to determine if it could cause the event "Software
Commands Both Lights Green Simultaneously”. The next step of the analysis, as
indicated by the Communication template, is to analyze the new process using a
Process Template. Based upon the assumption that the two exclusive access processes
communicate via a rendezvous type operation, the Communication via Shared Memory
and Communication via Exchange of Data branches of the Communication template are
not pursued. These two branches are therefore each represented by a diamond in the
Communication Template of Figure 35.
3. Overall Fault Tree for Bridge Hazard

Figure 36 shows the entire software fault tree that results from the
application of decomposition templates to the one-lane bridge hazard. The
decomposition process using the decomposition templates developed in Chapter 11
continues until the point at which the specific system modules, events and associated
conditions are indicated is sufficient detail. At this point, if the software system has
been developed down to the code level, the software fault tree analysis can be
continued through the application of Cha statement templates. If the software system is
has not yet been developed to the code level, the modules, events and conditions
indicated by the software fault tree can be used to provide specific input regarding

what the detailed design of the indicated modules should be concerned with.

D. SUMMARY OF DECOMPOSITION TEMPLATE APPLICATION

Hazard decomposition using the decomposition templates presented in this thesis
continues until a contradiction is reached, or a specific process within the software
system is indicated. Where a specific process is indicated, the decomposition of the
hazard continues with the use of statement templates. The use of statement templates

is supported by the structure of the fault tree resulting from the application of the
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decomposition templates. The fault tree up to this point contains the conditions that
must hold and the events that must occur in order for the system to arrive in the unsafe
state of the hazard. With the fault tree indicating a specific process or subsystem, the
use of statement templates can be better focused. The statement templates now have
the advantage of starting off pointing to the specific process to be analyzed, with both

the events and associated conditions known.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
The purpose of this thesis is to develop a formalized method of decomposing
system-level hazards. The decomposition templates presented herein provide the
software fault tree analyst with a framework for decomposing a hazard to the point at
which line by line code analysis can be conducted with existing statement templates.
This framework serves as a formal method for conducting the decomposition of system-
level hazards, and ensures that as many as possible of the applicable decomposition
aspects are considered. The decomposition of system-level hazards had previously been
conducted in a largely human intensive manner, carrying both the drawback of
introducing human error in the form of oversight as well as the strength of human
insight. The application of the decomposition templates developed in this thesis serves
to reduce the former and enhance the later.
1. Relevance to MIL-STD-882B
Task 202 of MIL-STD-882B [Ref. 11:p. 202-1] provides guidelines for the
identification of safety critical areas and the evaluation of hazards. The hazards
identified here include the potential contribution of software events to system/subsystem
mishaps. These software events include software commands and responses such as
inadvertent commands, failure to command, and untimely commands and responses.
The decomposition templates developed within the Specificity-of-Event Decomposition
Dimension of Chapter II can be used to determine the software events that can
contribute to system mishaps. The events identified by the decomposition templates

can then be incorporated into the safety design criteria of the software specifications.
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Task 203 of MIL-STD-882B [Ref. 11:p. 203-1] provides guidelines for the
identification of hazards associated with the design of subsystems. The hazards
identified here include the potential contribution of software events and faults with
regard to the safety of a subsystem. The subsystem decomposition templates developed
within the Subsystem-Size Decomposition Dimension of Chapter II can serve as an
analysis technique for performing Task 203’s Subsystem Hazard Analysis with regard to
the software of a system, and can be used to determine whether the safety design
criteria in the software specification have been satisfied.

2. Advantages of Decomposition Templates

The advantages of using the decomposition templates presented in this thesis
to decompose system-level hazards stem from the formalized standpoint from which the
templates were developed. The decomposition templates give the software fault tree
analyst a structured viewpoint from which to evaluate the software system. The fault
tree analyst can shift between the two interdependent decomposition dimensions as
necessary, focusing on either increasing the specificity of the event being considered, or
reducing the scope of the subsystem associated with the event. Shifting from one
decomposition dimension to another essentially allows the decomposition process to
shift the perspective from which the software system is being considered. The
templates serve to aid the analyst by providing a step by step framework with which to
approach each subsequent decomposition of the system-level hazard. As indicated in
Chapter III, this decomposition process can be continued until the point at which
statement templates can be used. The structure of the software fault tree provides the
analyst with information that focuses the application of statement templates. The
application of statement templates yields information of sufficient detail so as to allow
the analyst to make use of the Ada exception handling mechanism as a method of

pruning the developing fault tree. Pruning a fault tree in this manner is analogous to
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Leveson and Harvey’s method of inserting run-time checks into the code to trap a
developing unsafe state [Ref. 4:p. 576]. Each decomposition step provides specific
events and/or conditions that are to be further evaluated, as well as the specific
subsystem within which to evaluate these events and conditions. Applying the
decomposition templates presented in this thesis effectively yields pointers to specific
modules within the overall software system, along with information such as events and
conditions that the module needs to be evaluated for. The effect of the use of hazard
decomposition templates is to give the application of statement templates a specific
starting point, as well as a specific hazard to be analyzed by the statement templates.
3. Limitations of Decomposition Templates

The application of decomposition templates does not relieve the analyst from
the need for a through understanding of the software system. In order for the
Subsystem-Size Decomposition Dimension to be effective, the analyst must be
thoroughly familiar with the communication links and interfaces through which the
software system will function. The reliance of this decomposition dimension on the
communication between modules implies that, at a minimum, a high-level design of the
software system to be analyzed is needed in order for this decomposition dimension to
be effective. This requirement obviously limits the effectiveness of this dimension if
application when applied to solely the requirements specification of a system.

The effectiveness of the Specificity-of-Event Decomposition Dimension is
also reliant on the analyst’s knowledge of the software system. The focus of this
decomposition dimension centers around itemizing each event that could cause the
given hazard in the current subsystem. For the fault tree to fully reflect all the possible
paths in which the hazard could occur, the scope of the decomposition must constitute
a complete enumeration of the ways in which the hazard could occur within the current

subsystem. In other words, the events resulting from any decomposition step must
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represent in total the ways in which the hazard could occur at that level. A problem
arises in how confident the analyst is that every resultant event has been properly
reflected in the decomposition. Specifically, the analyst must know when every event
that could result from the decomposition of the hazard within the current subsystem has
been considered. For the Specificity-of-Event Decomposition Dimension to be
effective, it is clear that a through knowledge of how the software system functions is

required.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

Several topics related to this thesis warrant further research. First, research is
needed to determine how the process of decomposing a system-level hazard can be
automated. Even with the software fault tree limited to the analysis of safety critical
events, the fault tree of a moderately sized system will be substantial. Although aided
by the decomposition template framework, the development of any fault tree is labor
intensive. =~ The reliance of the Subsystem-Size Decomposition Dimension on the
communication links and interfaces of a system suggests that, given a high-level design,
automation of this decomposition dimension may be possible.

Second, the issue of integrating formal requirements into a safety analysis should
be investigated. The ability of the Specificity-of-Event Decomposition Dimension to be
applied to the requirements of a system indicates that this decomposition dimension can
be an effective method of analyzing the requirements of a system from a safety
standpoint.

A third area recommended for research is the possibility of transferring the
logical basis of the templates into a formal logic. A formal logic would enable the
analyst to give proof conditions that could be used to formally prove whether the

system could arrive in a state in which a specific hazard has occurred.
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APPENDIX A. REQUIREMENTS MODEL RULES FOR ONE-LANE BRIDGE

Rule 1 :

Rule 2 :

Rule 3 :

Rule 4 :

Rule § :

Rule 6 :

Rule 7 :

Rule 8 :

If in right-bound state Traffic_Idle and a right-bound car approaches the
bridge (as detected by sensor 1), then set RB_Cars to 1, request
Access_to_Bridge, and enter right-bound state Wait_for_Exclusive_Access
to_Bridge. @When exclusive access is granted, enter right-bound state
Traffic_Active and turn light RB green.

If in right-bound state Traffic_Active and a right-bound car leaves the bridge
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars by
1.

If in right-bound state Traffic_Active and a right-bound car leaves the bridge
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars
by 1.

If in right-bound state Traffic_Active and a right-bound car leaves the bridge
and RB_Cars is 1, then turmn light RB red, set RB_Cars to 0, release
Access_to_Bridge, and enter right-bound state Traffic_Idle.

If in left-bound state Traffic_Idle and a left-bound car approaches the bridge
(as detected by sensor 3), then set LB_Cars to 1, request Access_to_Bridge,
and enter left-bound state Wait_for_Exclusive_Access_to_Bridge. @ When
exclusive access is granted, enter left-bound state Traffic_Active and turn
light LB green.

If in right-bound state Traffic_Active and a right-bound car leaves the bridge
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars by
1.

If in left-bound state Traffic_Active and a left-bound car leaves the bridge
(as detected by sensor 4) and LB_Cars is not 1, then decrement LB_Cars
by 1.

If in left-bound state Traffic_Active and a left-bound car leaves the bridge

and LB_Cars is 1, then tumn light LB red, set LB_Cars to 0, release
Access_to_Bridge, and enter left-bound state Traffic_Idle.
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APPENDIX B. GRAPHICAL REPRESENTATION OF ONE-LANE BRIDGE
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